: | : | :期货量化学习 | :期货量化 |
返回列表 发帖

【Pandas 教程系列】- Pandas 数据清洗

【Pandas 教程系列】- Pandas 数据清洗

数据清洗是对一些没有用的数据进行处理的过程。

很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。

在这个教程中,我们将利用 Pandas包来进行数据清洗。

本文使用到的测试数据 property-data.csv 【https://static.jyshare.com/download/property-data.csv】如下:



上表包含了四种空数据:

n/a
NA

na

Pandas 清洗空值

如果我们要删除包含空字段的行,可以使用 dropna() 方法,语法格式如下:
  1. DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
复制代码
参数说明:

axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。
how:默认为 'any' 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how='all' 一行(或列)都是 NA 才去掉这整行。
thresh:设置需要多少非空值的数据才可以保留下来的。
subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。
inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改的是源数据。
我们可以通过 isnull() 判断各个单元格是否为空。

实例
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. print (df['NUM_BEDROOMS'])
  4. print (df['NUM_BEDROOMS'].isnull())
复制代码
以上实例输出结果如下:



以上例子中我们看到 Pandas 把 n/a 和 NA 当作空数据,na 不是空数据,不符合我们要求,我们可以指定空数据类型:

实例
  1. import pandas as pd

  2. missing_values = ["n/a", "na", "--"]
  3. df = pd.read_csv('property-data.csv', na_values = missing_values)

  4. print (df['NUM_BEDROOMS'])
  5. print (df['NUM_BEDROOMS'].isnull())
复制代码
以上实例输出结果如下:



接下来的实例演示了删除包含空数据的行。

实例
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. new_df = df.dropna()

  4. print(new_df.to_string())
复制代码
以上实例输出结果如下:



注意:默认情况下,dropna() 方法返回一个新的 DataFrame,不会修改源数据。

如果你要修改源数据 DataFrame, 可以使用 inplace = True 参数:

实例
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. df.dropna(inplace = True)

  4. print(df.to_string())
复制代码
以上实例输出结果如下:



我们也可以移除指定列有空值的行:

实例

移除 ST_NUM 列中字段值为空的行:
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. df.dropna(subset=['ST_NUM'], inplace = True)

  4. print(df.to_string())
复制代码
以上实例输出结果如下:



我们也可以 fillna() 方法来替换一些空字段:

实例

使用 12345 替换空字段:
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. df.fillna(12345, inplace = True)

  4. print(df.to_string())
复制代码
以上实例输出结果如下:



我们也可以指定某一个列来替换数据:

实例

使用 12345 替换 PID 为空数据:
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. df['PID'].fillna(12345, inplace = True)

  4. print(df.to_string())
复制代码
以上实例输出结果如下:



替换空单元格的常用方法是计算列的均值、中位数值或众数。

Pandas使用 mean()、median() 和 mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)。

实例

使用 mean() 方法计算列的均值并替换空单元格:
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. x = df["ST_NUM"].mean()

  4. df["ST_NUM"].fillna(x, inplace = True)

  5. print(df.to_string())
复制代码
以上实例输出结果如下,红框为计算的均值替换来空单元格:



实例

使用 median() 方法计算列的中位数并替换空单元格:
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. x = df["ST_NUM"].median()

  4. df["ST_NUM"].fillna(x, inplace = True)

  5. print(df.to_string())
复制代码
以上实例输出结果如下,红框为计算的中位数替换来空单元格:



实例

使用 mode() 方法计算列的众数并替换空单元格:
  1. import pandas as pd

  2. df = pd.read_csv('property-data.csv')

  3. x = df["ST_NUM"].mode()

  4. df["ST_NUM"].fillna(x, inplace = True)

  5. print(df.to_string())
复制代码
以上实例输出结果如下,红框为计算的众数替换来空单元格:



Pandas 清洗格式错误数据

数据格式错误的单元格会使数据分析变得困难,甚至不可能。

我们可以通过包含空单元格的行,或者将列中的所有单元格转换为相同格式的数据。

以下实例会格式化日期:

实例
  1. import pandas as pd

  2. # 第三个日期格式错误
  3. data = {
  4.   "Date": ['2020/12/01', '2020/12/02' , '20201226'],
  5.   "duration": [50, 40, 45]
  6. }

  7. df = pd.DataFrame(data, index = ["day1", "day2", "day3"])

  8. df['Date'] = pd.to_datetime(df['Date'])

  9. print(df.to_string())
复制代码
以上实例输出结果如下:
  1.            Date  duration
  2. day1 2020-12-01        50
  3. day2 2020-12-02        40
  4. day3 2020-12-26        45
复制代码
Pandas 清洗错误数据

数据错误也是很常见的情况,我们可以对错误的数据进行替换或移除。

以下实例会替换错误年龄的数据:

实例
  1. import pandas as pd

  2. person = {
  3.   "name": ['Google', 'Runoob' , 'Taobao'],
  4.   "age": [50, 40, 12345]    # 12345 年龄数据是错误的
  5. }

  6. df = pd.DataFrame(person)

  7. df.loc[2, 'age'] = 30 # 修改数据

  8. print(df.to_string())
复制代码
以上实例输出结果如下:
  1.      name  age
  2. 0  Google   50
  3. 1  Runoob   40
  4. 2  Taobao   30
复制代码
也可以设置条件语句:

实例

将 age 大于 120 的设置为 120:
  1. import pandas as pd

  2. person = {
  3.   "name": ['Google', 'Runoob' , 'Taobao'],
  4.   "age": [50, 200, 12345]   
  5. }

  6. df = pd.DataFrame(person)

  7. for x in df.index:
  8.   if df.loc[x, "age"] > 120:
  9.     df.loc[x, "age"] = 120

  10. print(df.to_string())
复制代码
以上实例输出结果如下:
  1.      name  age
  2. 0  Google   50
  3. 1  Runoob  120
  4. 2  Taobao  120
复制代码
也可以将错误数据的行删除:

实例

将 age 大于 120 的删除:
  1. import pandas as pd

  2. person = {
  3.   "name": ['Google', 'Runoob' , 'Taobao'],
  4.   "age": [50, 40, 12345]    # 12345 年龄数据是错误的
  5. }

  6. df = pd.DataFrame(person)

  7. for x in df.index:
  8.   if df.loc[x, "age"] > 120:
  9.     df.drop(x, inplace = True)

  10. print(df.to_string())
复制代码
以上实例输出结果如下:
  1.      name  age
  2. 0  Google   50
  3. 1  Runoob   40
复制代码
Pandas 清洗重复数据

如果我们要清洗重复数据,可以使用 duplicated() 和 drop_duplicates() 方法。

如果对应的数据是重复的,duplicated() 会返回 True,否则返回 False。

实例
  1. import pandas as pd

  2. person = {
  3.   "name": ['Google', 'Runoob', 'Runoob', 'Taobao'],
  4.   "age": [50, 40, 40, 23]  
  5. }
  6. df = pd.DataFrame(person)

  7. print(df.duplicated())
复制代码
以上实例输出结果如下:
  1. 0    False
  2. 1    False
  3. 2     True
  4. 3    False
  5. dtype: bool
复制代码
删除重复数据,可以直接使用drop_duplicates() 方法。

实例
  1. import pandas as pd

  2. persons = {
  3.   "name": ['Google', 'Runoob', 'Runoob', 'Taobao'],
  4.   "age": [50, 40, 40, 23]  
  5. }

  6. df = pd.DataFrame(persons)

  7. df.drop_duplicates(inplace = True)
  8. print(df)
复制代码
以上实例输出结果如下:
  1.      name  age
  2. 0  Google   50
  3. 1  Runoob   40
  4. 3  Taobao   23
复制代码

论坛官方微信、群(期货热点、量化探讨、开户与绑定实盘)
 
期货论坛 - 版权/免责声明   1.本站发布源码(包括函数、指标、策略等)均属开放源码,用意在于让使用者学习程序化语法撰写,使用者可以任意修改语法內容并调整参数。仅限用于个人学习使用,请勿转载、滥用,严禁私自连接实盘账户交易
  2.本站发布资讯(包括文章、视频、历史记录、教材、评论、资讯、交易方案等)均系转载自网络主流媒体,内容仅为作者当日个人观点,本网转载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。本网不对该类信息或数据做任何保证。不对您构成任何投资建议,不能依靠信息而取代自身独立判断,不对因使用本篇文章所诉信息或观点等导致的损失承担任何责任。
  3.本站发布资源(包括书籍、杂志、文档、软件等)均从互联网搜索而来,仅供个人免费交流学习,不可用作商业用途,本站不对显示的内容承担任何责任。请在下载后24小时内删除。如果喜欢,请购买正版,谢谢合作!
  4.龙听期货论坛原创文章属本网版权作品,转载须注明来源“龙听期货论坛”,违者本网将保留追究其相关法律责任的权力。本论坛除发布原创文章外,亦致力于优秀财经文章的交流分享,部分文章推送时若未能及时与原作者取得联系并涉及版权问题时,请及时联系删除。联系方式:http://www.qhlt.cn/thread-262-1-1.html
如何访问权限为100/255贴子:/thread-37840-1-1.html;注册后仍无法回复:/thread-23-1-1.html;微信/QQ群:/thread-262-1-1.html;网盘链接失效解决办法:/thread-93307-1-1.html

返回列表