- UID
- 2
- 积分
- 2874604
- 威望
- 1387331 布
- 龙e币
- 1487273 刀
- 在线时间
- 13155 小时
- 注册时间
- 2009-12-3
- 最后登录
- 2024-11-24
|
[模板与范例参考] 海龟交易法(期货)Python策略源码模板【东方财富Python量化】
- # coding=utf-8
- from __future__ import print_function, absolute_import, unicode_literals
- import numpy as np
- import pandas as pd
- from gm.api import *
- '''
- 以短期为例:20日线
- 第一步:获取历史数据,计算唐奇安通道和ATR
- 第二步:当突破唐奇安通道时,开仓。
- 第三步:计算加仓和止损信号。
- '''
- def init(context):
- # 设置计算唐奇安通道的参数
- context.n = 20
- # 设置合约标的
- context.symbol = 'DCE.i2012'
- # 设置交易最大资金比率
- context.ratio = 0.8
- # 订阅数据
- subscribe(symbols=context.symbol, frequency='60s', count=2)
- # 获取当前时间
- time = context.now.strftime('%H:%M:%S')
- # 如果策略执行时间点是交易时间段,则直接执行algo定义atr等参数,以防直接进入on_bar()导致atr等未定义
- if '09:00:00' < time < '15:00:00' or '21:00:00' < time < '23:00:00':
- algo(context)
- # 如果是交易时间段,等到开盘时间确保进入algo()
- schedule(schedule_func=algo, date_rule='1d', time_rule='09:00:00')
- schedule(schedule_func=algo, date_rule='1d', time_rule='21:00:00')
- def algo(context):
- # 计算通道的数据:当日最低、最高、上一交易日收盘
- # 注:由于talib库计算ATR的结果与公式求得的结果不符,所以这里利用公式计算ATR
- # 如果是回测模式,当天的数据直接用history取到
- if context.mode == 2:
- data = history_n(symbol=context.symbol, frequency='1d', count=context.n+1, end_time=context.now, fields='close,high,low,bob', df=True) # 计算ATR
- tr_list = []
- for i in range(0, len(data)-1):
- tr = max((data['high'].iloc[i] - data['low'].iloc[i]), data['close'].shift(-1).iloc[i] - data['high'].iloc[i],
- data['close'].shift(-1).iloc[i] - data['low'].iloc[i])
- tr_list.append(tr)
- context.atr = int(np.floor(np.mean(tr_list)))
- context.atr_half = int(np.floor(0.5 * context.atr))
- # 计算唐奇安通道
- context.don_open = np.max(data['high'].values[-context.n:])
- context.don_close = np.min(data['low'].values[-context.n:])
- # 如果是实时模式,当天的数据需要用current取到
- if context.mode == 1:
- data = history_n(symbol=context.symbol, frequency='1d', count=context.n, end_time=context.now, fields='close,high,low',
- df=True) # 计算ATR
- current_data = current(symbols=context.symbol) # 最新一个交易日的最高、最低
- tr_list = []
- for i in range(1, len(data)):
- tr = max((data['high'].iloc[i] - data['low'].iloc[i]),
- data['close'].shift(-1).iloc[i] - data['high'].iloc[i],
- data['close'].shift(-1).iloc[i] - data['low'].iloc[i])
- tr_list.append(tr)
- # 把最新一期tr加入列表中
- tr_new = max((current_data[0]['high'] - current_data[0]['low']),
- data['close'].iloc[-1] - current_data[0]['high'],
- data['close'].iloc[-1] - current_data[0]['low'])
- tr_list.append(tr_new)
- context.atr = int(np.floor(np.mean(tr_list)))
- context.atr_half = int(np.floor(0.5 * context.atr))
- # 计算唐奇安通道
- context.don_open = np.max(data['high'].values[-context.n:])
- context.don_close = np.min(data['low'].values[-context.n:])
- # 计算加仓点和止损点
- context.long_add_point = context.don_open + context.atr_half
- context.long_stop_loss = context.don_open - context.atr_half
- context.short_add_point = context.don_close - context.atr_half
- context.short_stop_loss = context.don_close + context.atr_half
- def on_bar(context, bars):
- # 提取数据
- symbol = bars[0]['symbol']
- recent_data = context.data(symbol=context.symbol, frequency='60s', count=2, fields='close,high,low')
- close = recent_data['close'].values[-1]
- # 账户仓位情况
- position_long = context.account().position(symbol=symbol, side=PositionSide_Long)
- position_short = context.account().position(symbol=symbol, side=PositionSide_Short)
- # 当无持仓时
- if not position_long and not position_short:
- # 如果向上突破唐奇安通道,则开多
- if close > context.don_open:
- order_volume(symbol=symbol, side=OrderSide_Buy, volume=context.atr, order_type=OrderType_Market, position_effect=PositionEffect_Open)
- print('开多仓atr')
- # 如果向下突破唐奇安通道,则开空
- if close < context.don_close:
- order_volume(symbol=symbol, side=OrderSide_Sell, volume=context.atr, order_type=OrderType_Market, position_effect=PositionEffect_Open)
- print('开空仓atr')
- # 有持仓时
- # 持多仓,继续突破(加仓)
- if position_long:
- # 当突破1/2atr时加仓
- if close > context.long_add_point:
- order_volume(symbol=symbol, volume=context.atr_half, side=OrderSide_Buy, order_type=OrderType_Market,position_effect=PositionEffect_Open)
- print('继续加仓0.5atr')
- context.long_add_point += context.atr_half
- context.long_stop_loss += context.atr_half
- # 持多仓,止损位计算
- if close < context.long_stop_loss:
- volume_hold = position_long['volume']
- if volume_hold >= context.atr_half:
- order_volume(symbol=symbol, volume=context.atr_half, side=OrderSide_Sell, order_type=OrderType_Market, position_effect=PositionEffect_Close)
- else:
- order_volume(symbol=symbol, volume=volume_hold, side=OrderSide_Sell, order_type=OrderType_Market,position_effect=PositionEffect_Close)
- print('平多仓0.5atr')
- context.long_add_point -= context.atr_half
- context.long_stop_loss -= context.atr_half
- # 持空仓,继续突破(加仓)
- if position_short:
- # 当跌破加仓点时加仓
- if close < context.short_add_point:
- order_volume(symbol = symbol, volume=context.atr_half, side=OrderSide_Sell, order_type=OrderType_Market, position_effect=PositionEffect_Open)
- print('继续加仓0.5atr')
- context.short_add_point -= context.atr_half
- context.short_stop_loss -= context.atr_half
- # 持多仓,止损位计算
- if close > context.short_stop_loss:
- volume_hold = position_short['volume']
- if volume_hold >= context.atr_half:
- order_volume(symbol=symbol, volume=context.atr_half, side=OrderSide_Buy, order_type=OrderType_Market, position_effect=PositionEffect_Close)
- else:
- order_volume(symbol=symbol, volume=volume_hold, side=OrderSide_Buy, order_type=OrderType_Market,position_effect=PositionEffect_Close)
- print('平空仓0.5atr')
- context.short_add_point += context.atr_half
- context.short_stop_loss += context.atr_half
- if __name__ == '__main__':
- '''
- strategy_id策略ID,由系统生成
- filename文件名,请与本文件名保持一致
- mode实时模式:MODE_LIVE回测模式:MODE_BACKTEST
- token绑定计算机的ID,可在系统设置-密钥管理中生成
- backtest_start_time回测开始时间
- backtest_end_time回测结束时间
- backtest_adjust股票复权方式不复权:ADJUST_NONE前复权:ADJUST_PREV后复权:ADJUST_POST
- backtest_initial_cash回测初始资金
- backtest_commission_ratio回测佣金比例
- backtest_slippage_ratio回测滑点比例
- '''
- run(strategy_id='strategy_id',
- filename='main.py',
- mode=MODE_BACKTEST,
- token='{{token}}',
- backtest_start_time='2020-02-15 09:15:00',
- backtest_end_time='2020-09-01 15:00:00',
- backtest_adjust=ADJUST_PREV,
- backtest_initial_cash=1000000,
- backtest_commission_ratio=0.0001,
- backtest_slippage_ratio=0.0001)
复制代码 |
论坛官方微信、群(期货热点、量化探讨、开户与绑定实盘)
|