: | : | :期货量化学习 | :期货量化 |
返回列表 发帖

正弦定理(The Law of Sines)

正弦定理(The Law of Sines)

正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。




发展简史

历史上,正弦定理的几何推导方法丰富多彩。根据其思路特征,主要可以分为两种。

第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。

18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。

第二种方法为“外接圆法”,最早为16世纪法国数学家韦达所采用。韦达没有讨论钝角三角形的情形,后世数学家对此作了补充。

定理定义

在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。则有:



一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。

验证推导






定理意义

正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦函数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。正弦定理是解三角形的重要工具。 [5]
在解三角形中,有以下的应用领域:
已知三角形的两角与一边,解三角形。
已知三角形的两边和其中一边所对的角,解三角形。
运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。
物理学中,有的物理量可以构成矢量三角形 。因此, 在求解矢量三角形边角关系的物理问题时, 应用正弦定理,常可使一些本来复杂的运算,获得简捷的解答。

定理推广





论坛官方微信、群(期货热点、量化探讨、开户与绑定实盘)
 
期货论坛 - 版权/免责声明   1.本站发布源码(包括函数、指标、策略等)均属开放源码,用意在于让使用者学习程序化语法撰写,使用者可以任意修改语法內容并调整参数。仅限用于个人学习使用,请勿转载、滥用,严禁私自连接实盘账户交易
  2.本站发布资讯(包括文章、视频、历史记录、教材、评论、资讯、交易方案等)均系转载自网络主流媒体,内容仅为作者当日个人观点,本网转载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。本网不对该类信息或数据做任何保证。不对您构成任何投资建议,不能依靠信息而取代自身独立判断,不对因使用本篇文章所诉信息或观点等导致的损失承担任何责任。
  3.本站发布资源(包括书籍、杂志、文档、软件等)均从互联网搜索而来,仅供个人免费交流学习,不可用作商业用途,本站不对显示的内容承担任何责任。请在下载后24小时内删除。如果喜欢,请购买正版,谢谢合作!
  4.龙听期货论坛原创文章属本网版权作品,转载须注明来源“龙听期货论坛”,违者本网将保留追究其相关法律责任的权力。本论坛除发布原创文章外,亦致力于优秀财经文章的交流分享,部分文章推送时若未能及时与原作者取得联系并涉及版权问题时,请及时联系删除。联系方式:http://www.qhlt.cn/thread-262-1-1.html
如何访问权限为100/255贴子:/thread-37840-1-1.html;注册后仍无法回复:/thread-23-1-1.html;微信/QQ群:/thread-262-1-1.html;网盘链接失效解决办法:/thread-93307-1-1.html

返回列表