MATLAB插值与拟合 §1曲线拟合实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | T | 13 | 15 | 17 | 14 | 16 | 19 | 26 | 24 | 26 | 27 | 29 |
试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1.线性拟合函数:regress() 调用格式: b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X与y的最小二乘拟合值,及线性模型的参数值β、ε。该函数求解线性模型: y=Xβ+ε β是p′1的参数向量;ε是服从标准正态分布的随机干扰的n′1的向量;y为n′1的向量;X为n′p矩阵。 bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε ;求线性拟合方程系数。 程序: x=[ones(10,1) (1:10)']; y=x*[10;1]+normrnd(0,0.1,10,1); [b,bint]=regress(y,x,0.05) 结果: x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334 13.0125 14.0288 14.8854 16.1191 17.1189 17.9962 19.0327 20.0175 b = 9.9213 1.0143 bint = 9.7889 10.0537 0.9930 1.0357 即回归方程为:y=9.9213+1.0143x 2.多项式曲线拟合函数:polyfit( ) 调用格式: p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 例2:由离散数据 x | 0 | .1 | .2 | .3 | .4 | .5 | .6 | .7 | .8 | .9 | 1 | y | .3 | .5 | 1 | 1.4 | 1.6 | 1.9 | .6 | .4 | .8 | 1.5 | 2 |
拟合出多项式。 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2]; n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,'o',xi,z,'k:',x,y,'b') legend('原始数据','3阶曲线') 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形:
如果是n=6,则如下图:
也可由函数给出数据。 例3:x=1:20,y=x+3*sin(x) 程序: x=1:20; y=x+3*sin(x); p=polyfit(x,y,6) xi=linspace(1,20,100); z=polyval(p,xi); %多项式求值函数 plot(x,y,'o',xi,z,'k:',x,y,'b') legend('原始数据','6阶曲线') 结果: p = 0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304
再用10阶多项式拟合 程序:x=1:20; y=x+3*sin(x); p=polyfit(x,y,10) xi=linspace(1,20,100); z=polyval(p,xi); plot(x,y,'o',xi,z,'k:',x,y,'b') legend('原始数据','10阶多项式') 结果:p = Columns 1 through 7 0.0000 -0.0000 0.0004 -0.0114 0.1814 -1.8065 11.2360 Columns 8 through 11 -42.0861 88.5907 -92.8155 40.2671
可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。 3. 多项式曲线求值函数:polyval( ) 调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) 说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 (未完) 转自 飞扬youth 的博客 |