$ c- @3 e; \$ |/ c/ @. d这次模拟还产生了一个“副产品”——从侧面限定了地球上水的起源时间。在大撞击之后的45亿年里,无数小行星和彗星来到了地球。过去的研究认为,正是这些小行星和彗星,给地球带来了大部分水和挥发物,再一次改变了地球岩石的氧同位素含量。然而,Greenwood及其同事们通过这次的地月岩石氧同位素含量的测量值进行推算,却发现地球全球水量中只有5-30%是大撞击之后地球上新增的,也就是说,地球上绝大部分的水可能在45亿年前的那次大撞击之前,就已经静静地存在于幼年地球上了。这也用不同方法印证了之前的研究结果[15]。 3 T/ Y4 d% |" a4 |, q- S那么这些水是如何在还未长成的地球上诞生,又是如何在大撞击和频繁的小型撞击之下幸存的?这些都还有待行星科学家们继续探索。另一方面,如果在行星形成早期就能有大量的水存在,那么经历过相似阶段的系外行星上,有液态水和生命的希望似乎也大了不少。+ p m) C8 u0 c' [! i
至于大撞击假说这栋大厦将来会怎么样嘛……或许有一天,行星科学家们能把所有的补丁都给完美补上,也或许有一天,补丁打太多大厦直接就塌了……谁知道呢?' E4 {) Q4 ?( S2 x5 g G 致谢:本文感谢好友Yanhao Lin, Shaofan Che, Le Qiao, Boyang Liu,Yuki小柒的审稿和对本文内容提升所提供的帮助。 4 j6 f# }5 n ?6 j(编辑:明天)参考文献:
Greenwood, R. C., Barrat, J. A., Miller, M. F., Anand, M., Dauphas, N., Franchi, I. A., ... & Starkey, N. A. (2018). Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Science advances, 4(3), eaao5928.
Hartmann, W. K., & Davis, D. R. (1975). Satellite-sized planetesimals and lunar origin. Icarus, 24(4), 504-515.
Canup, R. M., & Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412(6848), 708.
Wiechert, U., Halliday, A. N., Lee, D. C., Snyder, G. A., Taylor, L. A., & Rumble, D. (2001). Oxygen isotopes and the Moon-forming giant impact. Science, 294(5541), 345-348.
Pahlevan, K., & Stevenson, D. J. (2007). Equilibration in the aftermath of the lunar-forming giant impact. Earth and Planetary Science Letters, 262(3-4), 438-449.
Zhang, J., Dauphas, N., Davis, A. M., Leya, I., & Fedkin, A. (2012). The proto-Earth as a significant source of lunar material. Nature Geoscience, 5(4), 251.
Dauphas, N., Burkhardt, C., Warren, P. H., & Fang-Zhen, T. (2014). Geochemical arguments for an Earth-like Moon-forming impactor. Phil. Trans. R. Soc. A, 372(2024), 20130244.
Ćuk, M., & Stewart, S. T. (2012). Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. science, 338(6110), 1047-1052.
Canup, R. M. (2012). Forming a Moon with an Earth-like composition via a giant impact. Science, 1226073.
Rufu, R., Aharonson, O., & Perets, H. B. (2017). A multiple-impact origin for the Moon. Nature Geoscience, 10(2), 89.
Walker, R. J., Bermingham, K., Liu, J., Puchtel, I. S., Touboul, M., & Worsham, E. A. (2015). In search of late-stage planetary building blocks. Chemical Geology, 411, 125-142.
Herwartz, D., Pack, A., Friedrichs, B., & Bischoff, A. (2014). Identification of the giant impactor Theia in lunar rocks. Science, 344(6188), 1146-1150.
Young, E. D., Kohl, I. E., Warren, P. H., Rubie, D. C., Jacobson, S. A., & Morbidelli, A. (2016). Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 351(6272), 493-496.
Kleine, T. (2011). Geoscience: Earth's patchy late veneer. Nature, 477(7363), 168.
Fischer-Gödde, M., & Kleine, T. (2017). Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature, 541(7638), 525.