龙听期货论坛's Archiver

龙听 发表于 2024-3-13 11:26

Numpy(科学计算包)- 【线性代数 】

NumPy  提供了线性代数函数库 [b]linalg[/b],该库包含了线性代数所需的所有功能,可以看看下面的说明:
[table]
[tr][td]函数[/td][td]描述[/td][/tr]
[tr][td]dot[/td][td]两个数组的点积,即元素对应相乘。[/td][/tr]
[tr][td]vdot[/td][td] 两个向量的点积[/td][/tr]
[tr][td]inner[/td][td] 两个数组的内积[/td][/tr]
[tr][td]matmul[/td][td] 两个数组的矩阵积[/td][/tr]
[tr][td]determinant[/td][td] 数组的行列式[/td][/tr]
[tr][td]solve[/td][td] 求解线性矩阵方程[/td][/tr]
[tr][td]inv[/td][td] 计算矩阵的乘法逆矩阵[/td][/tr]
[/table]

龙听 发表于 2024-3-13 11:35

numpy.dot()

numpy.dot() 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为向量点积);对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,它的通用计算公式如下,即结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组b的倒数第二位上的所有元素的乘积和: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])。[code]numpy.dot(a, b, out=None) [/code]参数说明:

    a : ndarray 数组
    b : ndarray 数组
    out : ndarray, 可选,用来保存dot()的计算结果

实例[code]import numpy.matlib
import numpy as np

a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
print(np.dot(a,b))[/code]输出结果为:[code][[37  40]
[85  92]][/code]计算式为:[code][[1*11+2*13, 1*12+2*14],[3*11+4*13, 3*12+4*14]][/code]numpy.vdot()

numpy.vdot() 函数是两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数是多维数组,它会被展开。

实例[code]import numpy as np

a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])

# vdot 将数组展开计算内积
print (np.vdot(a,b))[/code]输出结果为:[code]130[/code]计算式为:[code]1*11 + 2*12 + 3*13 + 4*14 = 130[/code]numpy.inner()

numpy.inner() 函数返回一维数组的向量内积。对于更高的维度,它返回最后一个轴上的和的乘积。

实例[code]import numpy as np

print (np.inner(np.array([1,2,3]),np.array([0,1,0])))
# 等价于 1*0+2*1+3*0[/code]输出结果为:[code]2[/code]多维数组实例[code]import numpy as np
a = np.array([[1,2], [3,4]])

print ('数组 a:')
print (a)
b = np.array([[11, 12], [13, 14]])

print ('数组 b:')
print (b)

print ('内积:')
print (np.inner(a,b))[/code]输出结果为:[code]数组 a:
[[1 2]
[3 4]]
数组 b:
[[11 12]
[13 14]]
内积:
[[35 41]
[81 95]]
数组 a:
[[1 2]
[3 4]]
数组 b:
[[11 12]
[13 14]]
内积:
[[35 41]
[81 95]][/code]内积计算式为:[code]1*11+2*12, 1*13+2*14
3*11+4*12, 3*13+4*14[/code]numpy.matmul

numpy.matmul 函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。

另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。

对于二维数组,它就是矩阵乘法:

实例[code]import numpy.matlib
import numpy as np

a = [[1,0],[0,1]]
b = [[4,1],[2,2]]
print (np.matmul(a,b))[/code]输出结果为:[code][[4  1]
[2  2]][/code]二维和一维运算:

实例[code]import numpy.matlib
import numpy as np

a = [[1,0],[0,1]]
b = [1,2]
print (np.matmul(a,b))
print (np.matmul(b,a))[/code]输出结果为:[code][1  2]
[1  2][/code]维度大于二的数组 :

实例[code]import numpy.matlib
import numpy as np

a = np.arange(8).reshape(2,2,2)
b = np.arange(4).reshape(2,2)
print (np.matmul(a,b))[/code]输出结果为:[code][[[ 2  3]
  [ 6 11]]

[[10 19]
  [14 27]]][/code]numpy.linalg.det()

numpy.linalg.det() 函数计算输入矩阵的行列式。

行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。

换句话说,对于矩阵[[a,b],[c,d]],行列式计算为 ad-bc。 较大的方阵被认为是 2×2 矩阵的组合。

实例[code]import numpy as np
a = np.array([[1,2], [3,4]])

print (np.linalg.det(a))[/code]输出结果为:[code]-2.0[/code]实例[code]import numpy as np

b = np.array([[6,1,1], [4, -2, 5], [2,8,7]])
print (b)
print (np.linalg.det(b))
print (6*(-2*7 - 5*8) - 1*(4*7 - 5*2) + 1*(4*8 - -2*2))[/code]输出结果为:[code][[ 6  1  1]
[ 4 -2  5]
[ 2  8  7]]
-306.0
-306[/code]numpy.linalg.solve()

numpy.linalg.solve() 函数给出了矩阵形式的线性方程的解。

考虑以下线性方程:[code]x + y + z = 6

2y + 5z = -4

2x + 5y - z = 27[/code]可以使用矩阵表示为:
[img]http://p.algo2.net/2024/0313/970430d91ed53.jpg[/img]
如果矩阵成为A、X和B,方程变为:[code]AX = B



X = A^(-1)B[/code]numpy.linalg.inv()

numpy.linalg.inv() 函数计算矩阵的乘法逆矩阵。

逆矩阵(inverse matrix):设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

实例[code]import numpy as np

x = np.array([[1,2],[3,4]])
y = np.linalg.inv(x)
print (x)
print (y)
print (np.dot(x,y))[/code]输出结果为:[code][[1 2]
[3 4]]
[[-2.   1. ]
[ 1.5 -0.5]]
[[1.0000000e+00 0.0000000e+00]
[8.8817842e-16 1.0000000e+00]][/code]现在创建一个矩阵A的逆矩阵:

实例[code]import numpy as np

a = np.array([[1,1,1],[0,2,5],[2,5,-1]])

print ('数组 a:')
print (a)
ainv = np.linalg.inv(a)

print ('a 的逆:')
print (ainv)

print ('矩阵 b:')
b = np.array([[6],[-4],[27]])
print (b)

print ('计算:A^(-1)B:')
x = np.linalg.solve(a,b)
print (x)
# 这就是线性方向 x = 5, y = 3, z = -2 的解[/code]输出结果为:[code]数组 a:
[[ 1  1  1]
[ 0  2  5]
[ 2  5 -1]]
a 的逆:
[[ 1.28571429 -0.28571429 -0.14285714]
[-0.47619048  0.14285714  0.23809524]
[ 0.19047619  0.14285714 -0.0952381 ]]
矩阵 b:
[[ 6]
[-4]
[27]]
计算:A^(-1)B:
[[ 5.]
[ 3.]
[-2.]][/code]结果也可以使用以下函数获取:[code]x = np.dot(ainv,b)[/code]

页: [1]