龙听期货论坛's Archiver

龙听 发表于 2018-3-15 11:24

鳄鱼法则交易系统源码(Python源码)

源码如下:
[code]
import numpy as np
def initialize(context):
    g.up_price = 0 #向上碎形最高价
    g.low_price = 0 #向下碎形最低价
    g.up_fractal_exists = False #判断有效向上碎形
    g.down_fractal_exists = False #判断有效向下碎形
    g.AO_index = [0] #存放连续的AO指标数据
    g.cal_AC_index = [] #计算AC指标中转存储
    g.AC_index = [0] #存放连续的AC指标数据
    g.amount = 0 #满仓仓位
    g.stock = ['160119.XSHE']
    set_benchmark('160119.XSHE')

#判断 向上 或 向下 碎形
def is_fractal(stock,direction):
    hist = history(5,'1d',direction,[stock],df = False)
    if direction == 'high'\
    and hist[stock][2] > hist[stock][0]\
    and hist[stock][2] > hist[stock][1]\
    and hist[stock][2] > hist[stock][3]\
    and hist[stock][2] > hist[stock][4]:
        g.up_price = hist[stock][2]
        return True
    elif direction == 'low'\
    and hist[stock][2] < hist[stock][0]\
    and hist[stock][2] < hist[stock][1]\
    and hist[stock][2] < hist[stock][3]\
    and hist[stock][2] < hist[stock][4]:
        g.low_price = hist[stock][2]
        return True
    return False

#通过比较碎形与红线位置,判断碎形是否有效
def is_effective_fractal(stock, direction):
    if is_fractal(stock,direction):
        hist = history(13,'1d','close',[stock],df = False)
        red_line = hist[stock][:-5].mean()
        close_price = hist[stock][-1]
        if direction == 'high':
            if close_price > red_line:
                g.up_fractal_exists = True
            else:
                g.up_fractal_exists = False
        elif direction == 'low':
            if close_price < red_line:
                g.down_fractal_exists = True
            else:
                g.down_fractal_exists = False

#N日内最高价格的N日线
def nday_high_point(stock,n):
    hist = history(2*n,'1d','high',[stock],df = False)[stock]
    high_point = []
    for i in range(n):
        high_point.append(max(hist[-5-i:-1-i]))
    return np.array(high_point).mean()

#N日内最低价格的N日线
def nday_low_point(stock,n):
    hist = history(2*n,'1d','low',[stock],df = False)[stock]
    low_point = []
    for i in range(n):
        low_point.append(max(hist[-5-i:-1-i]))
    return np.array(low_point).mean()

#AO=5日内(最高-最低)/2的5日移动平均-34日内(最高-最低)/2的34日移动平均
def AO_index(stock):
    g.AO_index.append(nday_high_point(stock,5)/2 + nday_low_point(stock,5)/2\
                      - nday_high_point(stock,34)/2 - nday_low_point(stock,34)/2)
    return g.AO_index[-1]

#AO-AO的5日平均值的5日平均
def AC_index(stock):
    AO_index(stock)
    if len(g.AO_index) >= 5:
        g.cal_AC_index.append(g.AO_index[-1] - np.array(g.AO_index[-5:]).mean())
        if len(g.cal_AC_index) >=5:
            g.AC_index.append(np.array(g.cal_AC_index[-5:]).mean())

#判断序列n日上行
def is_up_going(alist,n):
    if len(alist) < n:
        return False
    for i in range(n-1):
        if alist[-(1+i)] <= alist[-(2+i)]:
            return False
    return True

#判断序列n日下行
def is_down_going(alist,n):
    if len(alist) < n:
        return False
    for i in range(n-1):
        if alist[-(1+i)] >= alist[-(2+i)]:
            return False
    return True

#碎形被突破
def active_fractal(stock,direction):
    close_price = history(1,'1d','close',[stock],df=False)[stock][0]
    if direction == 'up' and close_price > g.up_price:
        return True
    elif direction == 'down' and close_price < g.low_price:
        return True

#进场,初始仓位50%
def set_initial_position(stock,context):
    close_price = history(1,'1d','close',[stock],df=False)[stock][0]
    g.amount = context.portfolio.cash/close_price
    order(stock, g.amount*0.8)
    log.info("buying %s 股数为 %s"%(stock,g.amount*0.7))
    g.down_fractal_exists = False

#卖出
def sell_all_stock(stock,context):
    order_target(stock,0)
    log.info("selling %s"%stock)
    g.up_fractal_exists = False

#加仓
def adjust_position(stock,context,position):
    order(stock,g.amount*position)
    log.info("adjust position buying %s 股数为 %s"%(stock,g.amount*position))

def handle_data(context,data):
    stock = g.stock[0]
    #计算AO,AC指标
    AC_index(stock)
    #止损
    #空仓时,寻找机会入场
    if context.portfolio.positions[stock].amount == 0:
        #计算向上碎形
        is_effective_fractal(stock,'high')
        #有效向上碎形存在,并被突破,买入
        if g.up_fractal_exists and active_fractal(stock,'up'):
            set_initial_position(stock,context)
    #有持仓时,加仓或离场
    else:
        close_price = history(13,'1d','close',[stock],df=False)
        red_line = close_price[stock][:-5].mean()
        #计算向下碎形
        is_effective_fractal(stock,'low')
        #出场条件1:有效向下碎形存在,并被突破,卖出
        if g.down_fractal_exists and active_fractal(stock,'down'):
            sell_all_stock(stock,context)
            return
        #出场条件2:AC
        #加仓10%:AO,AC同时5日上行,且收盘价走高
        if is_up_going(g.AO_index,5)\
        and is_up_going(g.AC_index,3)\
        and is_up_going(close_price[stock],2):
            adjust_position(stock,context,0.1)
        #减仓10%:AO,AC同时3日下行,且收盘价走低
        if is_down_going(g.AO_index,5)\
        and is_down_going(g.AC_index,3)\
        and is_down_going(close_price[stock],2):
            adjust_position(stock,context,-0.1)
    record(AOindex = g.AO_index[-1])
    record(ACindex = g.AC_index[-1])
[/code]

瑋元 发表于 2018-5-5 02:18

下载 学习 谢谢大大 {:biggrin:}

超级坦克 发表于 2019-12-23 15:07

谢谢楼主的无私奉献

野孩子期货量化 发表于 2022-11-22 14:23

学习了

页: [1]